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a b s t r a c t

A practical universal modeling and simulation approach is presented in this paper to show that accu-
rate battery pack simulation can be achieved if cell-to-cell variations were taken into account. A generic
equivalent circuit model was used in the approach with parameters deduced from cell testing with proper
protocols, which could come from live cell monitoring in a control circuitry. Using a single cell model,
which was validated against experimental data and demonstrated with validity of high accuracy in pre-
eywords:
attery pack model
ell-to-cell variations
quivalent circuit model
OC

dicting cell performance, we showed that such a high accuracy in single cell model is essential for a
high fidelity pack simulation. It is also important to derive statistical confidence intervals accurately from
experiments to characterize intrinsic cell-to-cell variations in capacity and internal resistance, which need
to be considered in the pack model. If parameters for each individual cell were correctly approximated
and used in the pack model, the accuracy in the prediction of pack performance could be significantly
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improved.

. Introduction

Rechargeable lithium batteries (RLB) have been considered the
attery of choice for many mobile and portable applications. The
vailability, maturity, and cost advantages have made the RLB mar-
et growth highly anticipated. Increasingly sophisticated operation
f the RLB from cells to packs is also expected. For reliable opera-
ion of RLB in these applications, it is becoming crucial to demand
ccurate control of the pack and life prediction. Enabling such
capability presents significant values to the industry and the

onsumers if enhanced reliability in battery performance can be
ealized. However, accurately predicting battery performance and
ervice life remains very challenging. The ability to predict battery
ervice life accurately is highly desirable to date. A successful devel-
pment of such a capability can promote RLB market penetration
reatly.

Battery modeling has made substantial progress in recent years;
et predicting battery service life remains problematic, especially
or a battery pack, due to the lack of an established practice to
chieve such a prediction. Even with significant improvements
n computing power and software capability [1–8] since 1990s,

uch a predictive capability still immature at the present time.
n contrast, more advanced experimental studies had allowed
nprecedented characterizations of the interfacial behavior and
he electrode materials, which have advanced the understanding

∗ Corresponding author. Tel.: +1 808 956 2339; fax: +1 808 956 2336.
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f the cell degradation processes [9]. These advancements help us
mprove our modeling to a more realistic service life prediction.
herefore, an integrated battery testing and simulation capability
o assist battery R&D and operation is considerably easier nowadays
han a decade ago [10].

To enable battery performance and service life prediction we
eed to develop a high-fidelity computer simulation. Such mod-
ling and simulation should bridge laboratory knowledge and
eal-life experience so we can use laboratory test results to predict
attery performance in real life.

In this work, we present an effort that uses an equivalent cir-
uit model (ECM) to develop a battery simulation tool for RLB, with
ntention to enhance the simulation capability from cell to a realis-
ic simulation of a battery pack. This modeling approach is simple
et practical because it allows accurate prediction of battery perfor-
ance using data collected in the laboratory at the present time [8],

ut with an expectation that it will be equally useful in the future
ith in-line cell monitoring. This modeling approach uses param-

ters derived from typical laboratory test protocols such as those
sed in charge and discharge regimes; therefore, this modeling tool
an be very versatile to simulate single cell behavior with mini-
al characterization of the chemistry in detail. We shall describe

ow to develop an accurate single cell model (SCM) first and then
iscuss how to migrate to a pack model and simulation. Special

ttention was paid to the cell imbalance issue, arisen from cell-
o-cell variations, that is traditionally difficult to be characterized
nd quantified. We showed how to use a lot of 100 commercial
ells to define the variances in their make-ups and variations in
heir behavior. From such analyses, we developed a rationalized

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:bliaw@hawaii.edu
dx.doi.org/10.1016/j.jpowsour.2008.10.051
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ethodology to incorporate such individual cell characteristics as
ell-dependent parameters in SCM for pack modeling, conducted
ack simulation, and assessed agreement with the test data for
alidation.

. Experimental

.1. Cell characterizations

A lot of 100 AAA LiCoO2 Li-ion cells have been purchased from a
ommercial vendor. These cells were surveyed by weight and con-
itioned with five conditioning cycles, which comprised four C/2
nd one C/5 discharge regimes. During the conditioning, all cells
ere charged using the manufacturer’s recommended algorithm

which is CC at C/2 followed by CV at 4.2 V with C/200 or 1/2 h cut-
ff). Each cell was discharged with the same current, which is based
n the nominal capacity of 300 mAh for the calculation of the C/n
ates (n represents the discharge duration in hours). The capacities
or different C rates were thus measured with a Solartron 1470 test
tation or a Bio-Logic VMP3® system. After the five conditioning
ycles the cells were charged to 50% SOC for storage. One of the
ells in the lot (denoted as the “nominal sample cell”, NSC) was
ubjected to additional cycling at C/25, C/5, C/3, C/1 (1C) and 2C to
etermine its performance as the “nominal” characteristics of the
ells, which were then used to derive all necessary parameters for
he SCM. After each charge or discharge regime, the cell was set
o allow a 3-h relaxation (at open circuit and I = 0) for equilibra-
ion. We subsequently used the average potential of the charge and
ischarge curves obtained at C/25 as the pseudo-open circuit volt-
ge (pseudo-OCV) for NSC, and the state of charge (SOC) is defined
y the full capacity determined by the C/25 charge discharge cycle
ssuming that the cell is polarized close to its thermodynamic state
ith minimal polarization at this rate. Although such a pseudo-OCV

s. SOC curve is a close approximation to the real equilibrium OCV
s. SOC curve, the former is more convenient and practical to be
sed to infer SOC than the latter. Such a pseudo-OCV vs. SOC curve

s accurate enough for the purpose of this analysis and modeling.

.2. Single cell model (SCM)

The SCM is an ECM [11] written in MATLAB®, and battery
imulation was performed by feeding the SCM with the derived
arameters for NSC to give a nominal behavior of this chemistry.
he ECM approach for SCM enjoys benefits from its correspon-
ence directly with the complex impedance of the cell; therefore,
he SCM can simulate battery performance from the monitoring of
he cell operating and the ambient condition. In electrochemical
mpedance spectroscopy (EIS), we use equivalent circuit diagrams
o analyze the data from the EIS measurements to interpret the
ehavior of the battery system. In contrast, in the ECM, we use the
ssociated equivalent circuit diagram to emulate battery behavior.
ig. 1 presents an example of an ECM used in this study, where
o is the pseudo-OCV vs. SOC curve dictated by the cell thermody-
amics. In the kinetic aspects of the cell, we depict the cell internal
esistance by two contributions: R1 the ohmic contribution that
omprises the contact resistance and the electrolyte conductive
esistance usually considered constant as determined by the EIS;
nd, R2 the faradaic contributions including the charge transfer
esistance and the Warburg resistance in the conductive porous

lectrodes. Similar to R1 it is also convenient to determine R2 by
he EIS measurements at the same time. In a practical application,
erforming the EIS measurements and equivalent circuit analysis

s impractical in a cell. In addition, the impedance is often SOC and
ate-dependent [11].

2

a

Fig. 1. Schematic of the equivalent circuit model (ECM) used in this work.

An alternative approach we considered is to derive R2 from a
implified pseudo-Ohm’s law, VC/n = IC/nRexp, which serves as a first-
rder approximation of the cell kinetics. VC/n is the cell voltage
esponse under C/n polarization with a current IC/n. This approx-
mation works well if the time step used is considerably smaller
han the time constant of the associated reaction, thus the incre-

ental change of the state is minimal. This simple approximation
as used to determine the gross experimental resistance (Rexp) as a

unction of the SOC in this work. More precisely, we use the exper-
mental data to derived Rexp from �V = Rexp �I in a polarization
egime. Using this approximation, we also estimated the IR-free
oltage, which allowed us to project the OCV (VOC), which was then
sed to infer the SOC that corresponds to this specific Rexp. So, in
hort, as long as we can determine a polarization voltage difference
etween two rates, we can estimate Rexp according to

V ⇒ VOC − VC/n = Rexp(IOC − IC/n) ⇐ Rexp �I

hereas, IOC = 0; and,

exp = −(VOC − VC/n)

IC/n
.

Using this simple scheme, we established the Rexp vs. SOC cor-
espondence.

We should note that it is convenient to parameterize the resis-
ance with normalization to the C rate, so there is no scaling issue
hen we compare batteries of different sizes. This normalized

esistance Rnorm (in � Ah) can be used in the model without know-
ng the actual current and the resistance Rexp:

norm = (VOC − VC/n)

C/n

The normalized R1 (R1 norm) and R2 (R2 norm) can also be calcu-
ated by

2 norm = Rnorm − R1 norm

The distribution of the rated capacity among the cells allows
s to perform a statistical analysis on the variance and standard
eviation of the lot. Such a distribution for different rates, along
ith the distributions for weight and internal resistance, provides
s an in-depth understanding of the nature of these distributions
nd their relationships with one another, whether correlated or not.
.3. Battery pack simulation

For battery pack simulation, we developed methodologies and
lgorithms to modify parameters according to the variations in
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ig. 2. Discharge curve (voltage vs. capacity) for the nominal sample cell (NSC) at
/25, C/5, C/3, C/1 and 2C.

apacity and internal resistance from one cell to another, so each
ndividual cell in the pack retains its characteristics in the sim-
lation. The battery pack model was developed in a Modelica®

nvironment and compiled with the Dymola® engine [12]. We
hose Modelica® over SIMULINK® because of the flexibility offered
y Modelica® in modeling pack performance. The Modelica® is
n open-source, object-oriented, multi-domain modeling language
deally for component-oriented modeling of complex systems such
s those containing mechanical, electrical, electronic, hydraulic,
hermal, control, electric power or process-oriented subcompo-
ents. We used a “wired” topology and node connection to
epresent cells in a pack, and use Dymola® to solve equations for
utputs according to the input parameters of the cells and con-
itions in the pack configuration. The topology also provides the
exibility in configuring the hierarchy of execution, which greatly

acilitate the construction of a virtual test bench.

. Results and discussion

.1. Single cell modeling and validation

Fig. 2 presents the discharge curves of the NSC as a function
f C rates, from C/25 to 2C. The cell was charged at C/25 prior to
ach discharge. Up to C/3 the cell can deliver close to the nominal

ated capacity, whereas at 1C rate it loses about 3% of the rated C/2
apacity and 26% at 2C.

The common issue in cell testing and modeling is how to deter-
ine the SOC of the cell accurately. Since R2 is a function of SOC,

t should be derived from the subtraction of two different voltage

l
s

t
a

ig. 3. Pseudo-OCV analysis reveals the cell discharge behavior. A comparison of the cell r
n the post discharge rest periods at different C rates allows us to determine the correspo
Sources 186 (2009) 500–507

s. SOC curves, instead of voltage vs. capacity curves. To enable
uch a derivation, we have recently developed a method to cor-
ectly determine the SOC in a cell [13,14]. This method is based on
n analysis of the cell relaxation voltage (equilibrium OCV) after
ach charge and discharge regime to allow precise determination
f the terminal SOC for each charge discharge cycle at different C
ates. In Fig. 3, the cell relaxation voltages are compared at (a) prior
i.e., after C/25 charge and before the discharge) and (b) after the
ischarge to the same cut-off voltage at different C rates. By cor-
elating the cell relaxation voltage with the pseudo-OCV vs. SOC
urve we were able to determine the terminal SOC before and after
he discharge at different rates. Fig. 3(a) shows the relaxation volt-
ges prior to discharge at different rates. These voltages are almost
dentical; as expected, since the cell has been charged at C/25 each
ime. In contrast, the cell relaxation voltages after discharging to
he same end-of-discharge voltage (EODV = 2.75 V, as specified by
he manufacturer) at different rates are different (Fig. 3(b)). For
xample, when the cell was discharged at 2C to EODV the depth of
ischarge (DOD, reflecting the amount of capacity delivered) only
eached about 26% SOC. It is important to note that such a cor-
espondence of DOD vs. SOC is very useful, in our view, to trace
he cell’s ability to deliver capacity through duty cycle polarization.
t is also important to note that such a correspondence does not
lways follow SOC = 100% − DOD. In our previous work [13,14] we
ave explained the difference between the “thermodynamic” SOC
t-SOC) and “engineering” SOC (e-SOC, which by definition follows
he convention of “100% − DOD”). The difference is that the e-SOC
s based on “coulomb counting,” while the t-SOC depends on “elec-
rochemical equilibrium,” which should be determined by OCV

easurements. The e-SOC primarily reflects the kinetics of the cell,
hus rate dependent; whereas the t-SOC concedes at equilibrium
s a thermodynamic condition and therefore rate-independent. To
roperly address this difference, we shall use the following conven-
ion in this work: the SOC should correspond to the t-SOC, whereas
OD is represented by (100% − e-SOC) and denoted by the % of

ated nominal capacity. To this end it is critical to point out that
he t-SOC determined by correct OCV measurements will provide
true reference to the state of the battery. The e-SOC, on the other
and, cannot. By using e-SOC, one can conceive that various degrees
f error at times will be introduced to the SOC estimate due to
he lack of a reliable reference. Mistaking SOC = 100% − DOD could

ead to a significant amount of accumulated error at the end of the
imulation and greatly undermine the accuracy of the prediction.

With the terminal SOC determined by OCV measurements
hrough cycles correctly, as shown in Fig. 3(b), we can display an
ccurate trace of the DOD-SOC correspondence with cycle num-

elaxation voltage vs. pseudo-OCV (a) prior to discharge and (b) after the relaxation
nding SOC.



M. Dubarry et al. / Journal of Power Sources 186 (2009) 500–507 503

F
r

b
t
c
w
c
a
(
n
i
b
p
F
a
i
t
a
w
t
e
f
a
a

i
S
r
c

F
u

F
b
c

w
F
o
a
r

ig. 4. Normalized resistance map associated with SOC at C/25, C/5, C/3, C/1 and 2C
ates with linear extrapolation between sequential curves.

er. This ability allows us to deduce normalized resistance from
he cell voltage vs. SOC curves with cycle number. Such a proto-
ol helps us to monitor the degradation of the cell in capacity loss
ith sufficient understanding of the changes in the terminal SOC

ycle by cycle. Such a quantification of capacity loss can be used as
n accurate method to estimate battery age and the state of health
SOH) through duty cycle aging. Fig. 4 presents a map correlating
ormalized resistance with SOC and the discharge C rate (at the

nitial state of the battery). The shape of the surface is dictated
y the electrochemical processes, primarily transitions from one
hase transformation to another in the cell, and is rate dependent.
or instance, the resistance values close to 0% SOC increase notice-
bly. Such increases are governed by the last few staging processes
n the graphite anode. A transition from one phase transforma-
ion to another often incurs in a solid solution, accompanied with
change in the Gibbs free energy associated with this transition,
hich leads to a noticeable potential change and thus reflected in

he resistance. The shape is further influenced by the kinetics of
ither the Li intercalation in the solid solution or the phase trans-
ormation. For higher rates the changes in the shape are broadened
nd become less visible than those at the lower rates. We can yield
similar map for the rate effect of the charge regime as well.

In order to validate the SCM using the resistance-SOC-rate map

n Fig. 4, we use the discharge curve at C/2 rate as an example.
uch a C/2 discharge curve was simulated from the SCM using a
esistance-SOC curve interpolated from Fig. 4, and the result is
ompared to the experimental data in Fig. 5. This C/2 rate data

ig. 5. SCM validation: experimental C/2 discharge data (©) compared to the sim-
lated C/2 discharge curve.
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ig. 6. (a) Resistance dependence on cycle history at C/3 discharge rate for a LiFePO4-
ased Li-ion cell and (b) temperature-dependent voltage at C/3 discharge rate for a
ommercial lead acid module.

as not included in the matrix that was used to derive the map in
ig. 4. The standard deviation of the C/2 rate simulation is ±0.33%
ff the experimental data in average over the entire curve. Such
greement indeed illustrates the accuracy of the SCM with the
esistance mapping technique and interpolation. Extrapolating the
ap beyond the envelope presented in Fig. 4 needs to be assessed

autiously. Operating the cell outside the specification (i.e., cell nor-
al operating conditions) probably will induce additional adverse

ffects to the cell. One certainly would not expect the predictions
ould be validated with reliable data to assess the accuracy. It
hould be noted that such a high fidelity is crucial for pack sim-
lation. As we will demonstrate later, cell-to-cell variations are a
ritical factor that strongly influences the pack performance. We
hall call it “intrinsic cell imbalance.” Without such a high fidelity
CM, intrinsic cell imbalance could not be quantified and simu-
ated, nor can the pack performance be modeled with sufficient
ccuracy.

We would like to note that this ECM approach allows us to corre-
ate the resistance R2 norm with various parameters that are relevant
o a specific application. For instance, maps can be obtained as
function of duty cycle regime, temperature, pressure, and then

ompiled into a multi-variant matrix/table for more complicated

imulation. Such a complexity may lead to a more practical use
n predicting battery behavior in the operations of aircraft instru-

entation, space power, or deep ocean mooring. Fig. 6 presents an
xample of the maps obtained in (a) the resistance evolution with
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ig. 7. Experimental data from a 3-cell string vs. the simulation of the string based
n a generic SCM and make-up table of the NSC parameters.

uty cycle number for a commercial LiFePO4-based Li-ion battery
nd (b) the temperature dependence of a lead acid battery module
oltage. Both examples were obtained at C/3 rate.

.2. From single cell model to battery pack simulation

.2.1. Reality check on battery pack modeling
From a high fidelity SCM modeling to battery pack simulation,

here are several issues need to be clarified before an accurate
ack model can be realized. For instance, Fig. 7 presents a com-
on issue experienced in a battery pack simulation originated from

he variations in cell performance, as intrinsic cell imbalance. In
his illustration, we compared the simulation and the experimen-
al C/25 discharge curves of a battery string consisted of three cells
n series (3S). In this simulation a generic SCM using the parameters
erived from the NSC was used, with the assumption that the three
ells were identical (i.e., no intrinsic cell imbalance). The three cells
n the experiment were however consciously selected from the lot
omprising one from each of the high, medium, and low capacity
roups. In this trial, we found that the simulation (using the SCM
ith NSC parameters) yielded 6.5% more capacity than the exper-

mental data of the 3S string. The prediction would be worsened
o a greater degree with cycling. This experiment prompted us to
onduct a more careful and thorough analysis on the variations
n the cell performance in the lot and how they impact the pack
erformance. In order to understand such variations, the following
nalysis was performed.
.2.2. Statistical analysis of a 100-cell lot
From the lot specification sheet provided by the vendor, the

ominal capacity and the weight of the cells were supposed to be

d
t
c
t
F

Fig. 8. Distribution of (a) the weight and (b) the C/5
ig. 9. (a) C/25 discharge (voltage vs. time) and (b) voltage vs. normalized capacity
urves for five cells selected from the lot to show the disparities in the cell capacity.

00 mAh (based on a C/2 discharge) and 9 g, respectively. Upon sur-
eying the cells, we found that ±1.9% and ±1.7% in variances in the
/2 capacity and weight were observed, respectively. In Fig. 8 we
resent the distributions of (a) the weight of the 100 cells in the lot
nd (b) the capacity at C/5 (with ±1.6% variance). The distributions
ay appear similar; but they do not seem to be directly correlated,

ince the cell-by-cell weight versus capacity correlation was not
bserved.

There are a number of possibilities that could lead to the
bserved discord in capacity and weight. Naturally, we can pos-
ulate that the difference in the active material content in the cells
ould result in the variance in the capacity. We attested this hypoth-
sis experimentally as shown in Fig. 9. Fig. 9(a) displayed five C/25
ischarge curves for five cells, noted as A to E, arbitrarily chosen in

he lot. Again, although arbitrary, a conscious decision was made to
hoose the five that cover the entire range of the variance. It appears
hat with these five, there is a ±2.8% spread in the capacity variance.
ig. 9(b) displays the same information on a normalized capacity

nominal capacity of the 100 cells in the lot.
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the SCM as depicted in Fig. 11. These origins can be separated in
the SCM to take into account of the intrinsic imbalance among the
cells in the pack and be reflected in the model.
M. Dubarry et al. / Journal of P

cale. The following analysis helped us understand the nature of
his variance.

Since the variance in the cell capacity could come from either
hermodynamic or kinetic origins, or both; it is important to sepa-
ate kinetic contributions from the thermodynamic ones. Since the
ells were discharged at C/25, we further assumed that the kinetic
ffects (as reflected in the polarization) could be minimized and
egligible. Such an assumption was supported by the examination
f the plateau voltages among the cells in Fig. 9(b). For instance, by
omparing the last plateau voltage (before the EOD) among the five
ells, we found that these plateau voltages are almost identical, sub-
tantiating our assumption that the polarization effects were truly
egligible among the five; therefore, the polarization should have
ontributed little to the variance in the C25 capacity. It is then safe
o suggest that the variance must come from some sort of ther-

odynamic origin. Next, we shall consider two possible types of
ariations: chemical or physical in nature. For chemical variations,
o matter compositional variations in the active electrode material
atrix or the amount of impurities, one would expect inevitable

mpacts on the electrochemical processes, shown as changes in
he plateau range or reflected in the polarization. Fig. 9(b) shows
hat all the cells present the same electrochemical processes with
imilar potential and plateau range, indicating that there is little dif-
erence in the chemistry among the cells. This leads us to believe
hat the origins were physical in nature, possibly due to inhomo-
eneity in ink mixing and calendaring or deviation in the electrode
ootprint during cell fabrication. These physical attributes would
hen produce variations in capacity. It is therefore likely that we
xperienced variations in the content of the active material in the
lectrode among the cells.

We can further verify the above hypothesis by normalizing the
ischarge curve of each cell; thus determining a respective DOD
ccording to its specific capacity in each cell. When the normalized
ischarge curves were presented in this manner, we found that the
ve curves indeed matched up quite consistently in Fig. 9(b), con-
rming our postulation that the variations in capacity were simply
ue to active material content in the cells. We further examined
he relaxation cell voltages (similar to those in Fig. 3) and found
hat all the cells were indeed charged and discharged to the same
erminal SOC under C/25. Therefore, we confirmed that the discrep-
ncies in capacity among the five cells are most likely come from
he differences in the amount of active material in the cells.

We should note that the difference in the active material content
lone cannot explain the weight variations among the cells, and
ossibly, the variance in capacities at rates higher than C/25. There
re other attributes that can lead to the disparities in the C2 or C5
apacities among the cells. These capacity disparities could involve
inetic origins.

A common problem we faced in testing multiple cells is that
e often use the same current derived from the C rate based on

he nominal capacity in the test for all the cells, disregarding their
ctual content in the active material. However, as a result of the
ifferent content in the active material in the cells, this constant
urrent level in the test will not impose the same C rate for all
ells anymore. Nor the current density will be the same. In other
ords, without imposing the same C rate on each cell, in corre-

pondence to the specific amount of active material in each cell, it
s inevitable that the test will result in the variations in the capacity.
he situation gets worse as the C rate becomes higher.

There are other possibilities that can result in capacity variations

t high rates from one cell to another. For instance, the contact
esistance may vary from one cell to another. It suffices to say
hat variations in cell quality are a realistic concern, as we pointed
ut earlier regarding the uncorrelated disagreement between the
eight and the active material content in the cell. Despite a vari-

F
i

ig. 10. A density plot showing the distribution of C/5 polarization and the mean
alue in the 100-cell lot.

ty of attributes that contribute to the cell performance variations,
ost of the kinetic contributions can be lumped into the “polariza-

ion” term. Interestingly, we further conducted an analysis to show
hat the variance in the polarization can be estimated to only about
0.4% for the entire C/5 discharge regime (see Fig. 10), which is rel-
tively small compared to capacity variations. We also should note
hat in certain regions of SOC where phase transition occurs, the
olarization spread is higher (implying more sensitive to kinetics)
han those in the plateaus, as shown in Fig. 10. Their impact on the
apacity is however small.

Given all these analyses and considerations on different
ttributes to the capacity variations, we realized that no single
ttribute is sufficient to explain the 6.5% capacity discrepancy
etween the simulation and the actual experimental data, as shown

n Fig. 7. If the discrepancy is truly an accumulated error from var-
ous attributes in the three-cell string, we need to improve the
ccuracy of the pack model to avoid “error-runaway” when the
omplexity of pack configuration increases. Otherwise, pack simu-
ation and control will not be feasible and useful anymore.

.2.3. Formulation of a pack model
It is conceivable now that the pack model has to take the intrinsic

ell variations into consideration in the simulation. The nature of
uch an imbalance in the pack arisen from intrinsic cell variations,
ue to thermodynamic origins such as the variations in the active
aterial content in the cell or kinetic origins represented by the

olarization effects, needs to be reflected in the pack model and
imulation.

Both thermodynamic and kinetic attributes can be depicted in
ig. 11. Schematic of SCM with both thermodynamic and kinetic contributions
ncorporated.
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the middle one (2/3) contributed to the majority of the discrepancy.
It is important to point out that we have thus achieved a significant
improvement in pack model accuracy, which is within the same
confidence level of a cell; i.e., within 1.5–2%.
ig. 12. Initial cell voltage (changed with the IR polarization upon imposition of
urrent) vs. C rate for the NSC and a linear fit of the curve.

To properly take into account the variation of the capacity
which is related to the active material content), we need to prop-
rly scale the Vo − SOC correspondence in the SCM for each cell in
he pack. Initially our definition of SOC is based on the C25 capacity
or the NSC. For any other cell in the lot, the corresponding Vo − SOC
eeds to be scaled according to its capacity against that of the NSC.

To take into account the polarization effects, we noted that the
ariations in the polarization among the cells are a collective result
rom various resistive contributions—both ohmic and faradaic. To
ormulate a viable approach we analyzed possible variations in the
ormalized resistance map and developed a scheme to convert the
olarization in each individual cell scaled to that of the NSC. The
pecific polarization parameters so determined for each cell were
mployed in the pack model to account for cell-to-cell variations in
he simulation as follows.

First, we determined a “normalized polarization resistance” Rnp

n each cell by plotting the initial cell voltage (after the initial IR
rop) versus the C rate. As shown in Fig. 12, we used the NSC as
n example. The resulting curve is linear, as expected for a pseudo-
hmic behavior. A linear fit of the curve gives the slope and thus
np, which is independent of current or C rate. For NSC, it is about
19 � Ah. Using the same technique, we can determine the unique
np for each cell. By comparing the Rnp of a specific cell versus that of
he NSC (i.e., 119 � Ah), we yielded a scaling factor that can be used
o convert the normalized resistance map for the NSC to a unique
ne for the specific cell. Therefore, each cell will have a unique nor-
alized resistance map for the generic SCM to be used in the pack
odel.
This scaling process to derive the individual resistance map for

ach cell can be achieved in the conditioning cycles in which two
ifferent rates were applied. If more rates were employed in the
onditioning, more accurate scaling of the resistance map can be
ccomplished.

Fig. 13 presents the variance of the polarization resistance from
he 100 cells in the lot. Most of the cells exhibit resistance values
ithin a narrow range close to that of the SNC. There are anomalies

hat could be related to contact problems, especially those on the
igh side.

.2.4. Validation of the pack model
We have so far explained the analyses of the attributes to the

ell variations in performance and the protocols to incorporate such
isparities among the cells into the pack model and simulation. We

hall now assess the effectiveness of these protocols in taking into
ccount of the unique property of each cell and the intrinsic imbal-
nce among the cells in the pack and quantify the improvement in
ccuracy of the pack model prediction.

F
r

Fig. 13. Distribution of the polarization resistance among the 100 cells.

Returning to the previous three-cell string experiment, we now
e-estimated the parameters for the three cells, namely cell 1/3, 2/3,
nd 3/3 (in the string configuration), as follows:

nom1/3 = 301 mAh, QC/25 1/3 = 307 mAh, Rpol1/3 = 73 m� Ah,

nom2/3 = 294 mAh, QC/25 2/3 = 301 mAh, Rpol2/3 = 70 m� Ah,

nom3/3 = 288 mAh, QC/25 3/3 = 295 mAh, Rpol3/3 = 108 m� Ah.

Here the Qnom is the C2 capacity determined experimentally;
hile QC/25 is the capacity scaled from that of NSC. The C25 capacity

f the string was simulated again with the newly scaled resistance
ap and Vo − SOC correspondence for each cell. Fig. 14 shows the

omparison between the simulation and experimental data. The
ifference in the capacity prediction was reduced from the previ-
us 6.5% to 1.6% with these protocols. The agreement in the cell
oltage is also noticeably improved, particularly for the first 15 h
n the discharge regime. In a closer examination of the individual
ell data, we found that the behavior of the highest (1/3) and lowest
apacity (3/3) cells was closely matched in the simulation, whereas
ig. 14. Simulated discharge curve for the 3-cell string showed an improved accu-
acy with the consideration of intrinsic imbalance due to cell-to-cell variations.
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.2.5. Large pack modeling and simulation
Although the feasibility of treating intrinsic cell imbalance for

small string to achieve an accurate prediction in a pack has been
emonstrated now, maintaining such accuracy as the cell number

n the string increases remains to be validated. We however sus-
ect that as the cell number increases, the degree of complexity
o achieve accurate pack simulation also increases. The sensitivity
o the initial cell imbalance could be more complicated as the cell
umber increases. An assessment on this hypothesis is in progress.

Our protocols will however allow us to detect such sensitivity
n a quantitative manner. We are also looking for alternative anal-
ses to help us reduce the burden of complexity in the simulation
t the cell level so a validated technique can be developed to sim-
lify the pack model prediction and improve accuracy. At the end,
simplified scheme can be used for parameterization for each cell
ccording to the distribution and statistical confidence intervals to
chieve a sufficient accuracy in the pack simulation. We are also
ssessing other contributions to the cell imbalance from external
actors such as temperature gradient, thermal cycle induced effects,
hich should be considered in the pack model, so that the reality of

peration and different degrees of impact on each cell can be incor-
orated in the pack model. After all, each protocol developed in
his approach shall be able to contribute to a logical and systematic

ethodology to handle issues in the pack modeling.

. Conclusion

We have shown that a simple and effective battery modeling
pproach using equivalent circuit technique can provide superior
ccuracy in predicting single cell performance, a comprehensive
nalysis on the issues related to the intrinsic cell imbalance, and
mproved accuracy in the battery pack performance simulation

hen cell-to-cell variations were taken into consideration. There-

ore, this approach offers high fidelity simulations of the battery
erformance from a single cell to a pack, reflecting confidence

evel of a typical batch of cells and the manufacturer’s quality in
ssembly. We rationalized the logic steps taken to achieve accurate
redictions to battery pack performance. Attention was paid to the

[
[

[

[
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nalysis of rate and SOC dependence of the polarization resistance
n the cells to yield sufficient understanding of the attributes to
he cell-to-cell variations in performance and quantify the intrinsic
ell imbalance in a pack to permit accurate predictions at the pack
evel. We believe this is the first pack modeling and simulation with
uantifiable identification of various attributes to cell performance
ariations in a lot to allow a proper incorporation of intrinsic cell
mbalance into a pack model to achieve an unprecedented accu-
acy with the error contained within the distribution of a lot and
alidated with experiments.
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